Optimization of allograft implantation using scaffold-free chondrocyte plates.

نویسندگان

  • Toshihiro Nagai
  • Masato Sato
  • Katsuko S Furukawa
  • Toshiharu Kutsuna
  • Naoshi Ohta
  • Takashi Ushida
  • Joji Mochida
چکیده

If a tissue-engineered cartilage transplant is to succeed, it needs to integrate with the host tissue, to endure physiological loading, and to acquire the phenotype of the articular cartilage. Although there are many reported treatments for osteochondral defects of articular cartilage, problems remain with the use of artificial matrices (scaffolds) and the stage of implantation. We constructed scaffold-free three-dimensional tissue-engineered cartilage allografts using a rotational culture system and investigated the optimal stage of implantation and repair of the remodeling site. We evaluated the amounts of extracellular matrix and gene expression levels in scaffold-free constructs and transplanted the constructs for osteochondral defects using a rabbit model. Allografted 2-week constructs expressed high levels of proteoglycan and collagen per DNA content, integrated with the host cartilage successfully, and were able to counter physiological loads, and the chondrocyte plate contributed reparative mesenchymal stem cells to the final phenotype of the articular cartilage.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Advances in autologous chondrocyte implantation and related techniques for cartilage repair.

Articular cartilage is a specialized tissue exhibiting low intrinsic capabilities of regeneration or healing after injury. Autologous chondrocyte implantation (ACI) and scaffold-supported ACI are often used for treatment of larger chondral defects (> 2 cm2). These utilize open surgery re-implantation of ex vivo cultured autologous chondrocytes harvested as a biopsy arthroscopically in a prior s...

متن کامل

Osteochondritis Dissecans of the Knee: Diagnosis and Treatment.

Osteochondritis dissecans (OCD) is a pathological process affecting the subchondral bone of the knee in children and adolescents with open growth plates (juvenile OCD) and young adults with closed growth plates (adult OCD). It may lead to secondary effects on joint cartilage, such as pain, edema, possible formation of free bodies and mechanical symptoms, including joint locking. OCD may lead to...

متن کامل

Tissue engineering of articular cartilage using an allograft of cultured chondrocytes in a membrane-sealed atelocollagen honeycomb-shaped scaffold (ACHMS scaffold).

The aim of this study was to investigate with tissue engineering procedures the possibility of using atelocollagen honeycomb-shaped scaffolds sealed with a membrane (ACHMS scaffold) for the culturing of chondrocytes to repair articular cartilage defects. Chondrocytes from the articular cartilage of Japanese white rabbits were cultured in ACHMS scaffolds to allow a high-density, three-dimensiona...

متن کامل

Scaffold-free tissue engineering for injured joint surface restoration

Articular cartilage does not heal spontaneously due to its limited healing capacity, and thus effective treatments for cartilage injuries has remained challenging. Since the first report by Brittberg et al. in 1994, autologous chondrocyte implantation (ACI) has been introduced into the clinic. Recently, as an alternative for chondrocyte-based therapy, mesenchymal stem cell (MSC)-based therapy h...

متن کامل

Repair of a chondral defect using a cell free scaffold in a young patient - a case report of successful scaffold transformation and colonisation

BACKGROUND Chondral defects of the articular surface are a common condition that can lead to osteoarthritis if not treated. Therapy of this condition is a topic of constant debate and a variety of chondral repair strategies are currently used. One strategy involves implantation of a cell-free matrix of type I collagen (COL1), to provide a scaffold for chondrocyte migration and proliferation and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Tissue engineering. Part A

دوره 14 7  شماره 

صفحات  -

تاریخ انتشار 2008